↳ ITRS
↳ ITRStoIDPProof
z
eval(x, y) → Cond_eval(&&(>@z(x, 0@z), >@z(y, 0@z)), x, y)
Cond_eval(TRUE, x, y) → eval(-@z(x, 1@z), -@z(y, 1@z))
eval(x0, x1)
Cond_eval(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
eval(x, y) → Cond_eval(&&(>@z(x, 0@z), >@z(y, 0@z)), x, y)
Cond_eval(TRUE, x, y) → eval(-@z(x, 1@z), -@z(y, 1@z))
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>@z(x[0], 0@z), >@z(y[0], 0@z)) →* TRUE))
(1) -> (0), if ((-@z(y[1], 1@z) →* y[0])∧(-@z(x[1], 1@z) →* x[0]))
eval(x0, x1)
Cond_eval(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((x[0] →* x[1])∧(y[0] →* y[1])∧(&&(>@z(x[0], 0@z), >@z(y[0], 0@z)) →* TRUE))
(1) -> (0), if ((-@z(y[1], 1@z) →* y[0])∧(-@z(x[1], 1@z) →* x[0]))
eval(x0, x1)
Cond_eval(TRUE, x0, x1)
(1) (EVAL(x[0], y[0])≥NonInfC∧EVAL(x[0], y[0])≥COND_EVAL(&&(>@z(x[0], 0@z), >@z(y[0], 0@z)), x[0], y[0])∧(UIncreasing(COND_EVAL(&&(>@z(x[0], 0@z), >@z(y[0], 0@z)), x[0], y[0])), ≥))
(2) ((UIncreasing(COND_EVAL(&&(>@z(x[0], 0@z), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(&&(>@z(x[0], 0@z), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(x[0], 0@z), >@z(y[0], 0@z)), x[0], y[0])), ≥))
(5) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(x[0], 0@z), >@z(y[0], 0@z)), x[0], y[0])), ≥)∧0 ≥ 0)
(6) (&&(>@z(x[0], 0@z), >@z(y[0], 0@z))=TRUE∧y[0]=y[1]∧x[0]=x[1]∧-@z(y[1], 1@z)=y[0]1∧-@z(x[1], 1@z)=x[0]1 ⇒ COND_EVAL(TRUE, x[1], y[1])≥NonInfC∧COND_EVAL(TRUE, x[1], y[1])≥EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z))∧(UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z))), ≥))
(7) (>@z(x[0], 0@z)=TRUE∧>@z(y[0], 0@z)=TRUE ⇒ COND_EVAL(TRUE, x[0], y[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0])≥EVAL(-@z(x[0], 1@z), -@z(y[0], 1@z))∧(UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z))), ≥))
(8) (x[0] + -1 ≥ 0∧-1 + y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[0] ≥ 0∧0 ≥ 0)
(9) (x[0] + -1 ≥ 0∧-1 + y[0] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[0] ≥ 0∧0 ≥ 0)
(10) (x[0] + -1 ≥ 0∧-1 + y[0] ≥ 0 ⇒ -1 + (-1)Bound + (2)y[0] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z))), ≥))
(11) (x[0] + -1 ≥ 0∧y[0] ≥ 0 ⇒ 1 + (-1)Bound + (2)y[0] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z))), ≥))
(12) (x[0] ≥ 0∧y[0] ≥ 0 ⇒ 1 + (-1)Bound + (2)y[0] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z))), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = 2
POL(COND_EVAL(x1, x2, x3)) = -1 + (2)x3
POL(EVAL(x1, x2)) = (2)x2
POL(FALSE) = 2
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
EVAL(x[0], y[0]) → COND_EVAL(&&(>@z(x[0], 0@z), >@z(y[0], 0@z)), x[0], y[0])
COND_EVAL(TRUE, x[1], y[1]) → EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z))
COND_EVAL(TRUE, x[1], y[1]) → EVAL(-@z(x[1], 1@z), -@z(y[1], 1@z))
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
eval(x0, x1)
Cond_eval(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
eval(x0, x1)
Cond_eval(TRUE, x0, x1)